SOJ Veterinary Sciences
페이지 정보
본문
Niemann H, Kuhla B, Flachowsky G. Perspectives for feed-environment friendly animal manufacturing. Journal of animal science. 2011; 89 (12):4344-63.
Elsik CG, Tellam RL, Worley KC, Gibbs R A, Muzny DM, Weinstock GM, et al. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science. 2009; 324 (5926):522-528. doi: 10.1126/science.1169588
Yang B, Wang J, Tang B, Liu Y, Guo C, Yang P, et al. Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle. PloS one. 2011;6 (3):e17593. doi: 10.1371/journal.pone.0017593
Wang J, Yang P, Tang B, Sun X, Zhang R, Guo C,et al. Expression and characterization of bioactive recombinant human alpha-lactalbumin in the milk of transgenic cloned cows. Journal of dairy science. 2008;91(12):4466-4476. doi: 10.3168/jds.2008-1189
Donovan DM, Kerr DE, Wall RJ. Engineering disease resistant cattle. Transgenic research. 2005;14 (5):563-567. doi: 10.1007/s11248-005-0670-8
Campbell KH, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996;380 (6569):64-66. DOI: 10.1038/380064a0
Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. Journal of cell science. 2000;113, 5-10.
Xie D, Chen CC, Ptaszek LM, Xiao S, Cao X, Fang F,et al. Rewirable gene regulatory networks within the preimplantation embryonic improvement of three mammalian species. Genome research. 2010;20 (6):804-815. doi: 10.1101/gr.100594.109
Trusler O, Huang Z, Goodwin J, Laslett AL. Cell floor markers for the identification and examine of human naive pluripotent stem cells. Stem cell research. 2018;26:36-43. doi: 10.1016/j.scr.2017.11.017
Isobe K, Cheng Z, Ito S, Nishio N. Aging within the mouse and perspectives of rejuvenation by way of induced pluripotent stem cells (iPSCs). Results and problems in cell differentiation. 2012;55:413-427.
Mitalipov S, Wolf D. Totipotency, pluripotency and nuclear reprogramming. Advances in biochemicaengineering/biotechnology. 2009;114:185-99. doi: 10.1007/10_2008_45
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal standards for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8 (4):315-317. DOI: 10.1080/14653240600855905
Pierantozzi E, Gava B, Manini I, Roviello F, Marotta G, Chiavarelli M, et al. Pluripotency regulators in human mesenchymal stem cells: expression of NANOG but not of OCT-4 and SOX-2. Stem cells and growth. 2011;20 (5):915-23. doi: 10.1089/scd.2010.0353
Riekstina U, Cakstina I,Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, et al. Embryonic stem cell marker expression sample in human mesenchymal stem cells derived from bone marrow, adipose tissue, coronary heart and dermis. Stem cell reviews. 2009;5 (4):378-86. doi: 10.1007/s12015-009-9094-9
Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger J, et al. Mesenchymal precursor cells in the blood of normal people. Arthritis analysis. 2000; 2 (6):477-88. doi: 10.1186/ar130
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nature critiques Immunology. 2008;8 (9):726-736. doi: 10.1038/nri2395
Porada CD, Zanjani ED, Almeida-Porad G. Adult mesenchymal stem cells: a pluripotent inhabitants with a number of purposes. Current stem cell analysis & therapy. 2006;1(3):365-369.
Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation analysis. 2004;95(1):9-20. doi: 10.1161/01.RES.0000135902.99383.6f
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD,Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from grownup marrow. Nature. 2002;418(6893):41-49.doi:10.1038/nature00870
Dai KR, Xu XL, Tang TT, Zhu ZA, Yu CF, Lou JR, et al. Repairing of goat tibial bone defects with BMP-2 gene-modified tissue-engineered bone. Calcified tissue international. 2005;77 (1):55-61. doi: 10.1007/s00223-004-0095-z
Jang BJ, Byeon YE, Lim JH, Ryu HH, Kim WH, Koyama Y, et al. Implantation of canine umbilical cord blood-derived mesenchymal stem cells combined with beta-tricalcium phosphate enhances osteogenesis in bone defect model canine. Journal of veterinary science. 2008;9 (4):387-93.
Lee KB, Hui JH, Song IC, Ardany L, Lee EH. Injectable mesenchymal stem cell therapy for large cartilage defects: a porcine model. Stem cells. 2007;25 (11):2964-71. doi: 10.1634/stemcells. 2006-0311
Lim JH, Byeon YE, Ryu HH, Jeong YH, Lee YW, Kim WH,et al. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured canines. Journal of veterinary science. 2007;8 (3):275-282.
Black LL, Gaynor J, Adams C, Dhupa S, Sams AE, Taylor R, et al. Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in canines. Veterinary therapeutics : research in applied veterinary medicine. 2008;9 (3):192-200.
Pacini S, Spinabella S, Trombi L, Fazzi R, Galimberti S, Dini F, et al. Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses. Tissue engineering. 2007;Thirteen (12):2949-55. doi: 10.1089/ten.2007.0108
Vilar JM, Batista M, Morales M, Santana A, Cuervo B, Rubio M, et al. Assessment of the impact of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic canine using a double blinded power platform analysis. BMC veterinary analysis. 2014; 10:143. doi: 10.1186/1746-6148-10-143
Raoufi MF, Tajik P, Dehghan MM, Eini F, Barin A. Isolation and differentiation of mesenchymal stem cells from bovine umbilical cord blood. Reproduction in home animals Zuchthygiene. 2011;Forty six (1):95-99. doi: 10.1111/j.1439-0531.2010.01594.x
Erickson IE, van Veen SC, Sengupta S, Kestle SR, Mauck RL. Cartilage matrix formation by bovine mesenchymal stem cells in three-dimensional tradition is age-dependent. Clinical orthopaedics and related research. 2011;469 (10):2744-2753. doi: 10.1007/s11999-011-1869-z
Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in numerous hydrogels: influence of collagen kind II extracellular matrix on MSC chondrogenesis. Biotechnology and bioengineering. 2006;93(6):1152-1163. doi: 10.1002/bit.20828
Bosnakovski D, Mizuno M, Kim G, Ishiguro T, Okumura M, Iwanaga T, et al. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Experimental hematology. 2004;32 (5):502-509. doi: 10.1016/j.exphem.2004.02.009
Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell and tissue research. 2005;319(2):243-253. DOI: 10.1007/s00441-004-1012-5
Cardoso TC, Ferrari HF, Garcia AF, Novais JB, Silva-Frade C, Ferrarezi MC, et al. Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in an outlined serum-free three-dimensional system. BMC biotechnology. 2012;12:18.
Evans MJ, Kaufman MH. Establishment in tradition of pluripotential cells from mouse embryos. Nature. 1981;292 (5819):154-156.
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America. 1981;78 (12):7634-8.
Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing Dp, et al. Myeloid leukaemia inhibitory issue maintains the developmental potential of embryonic stem cells. Nature. 1988: 336 (6200):684-687. doi: 10.1038/336684a0
Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 2003;115 (3):281-292.
Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J,et al. The ground state of embryonic stem cell self-renewal. Nature. 2008;453 (7194):519-523. doi: 10.1038/nature06968
Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, et al. The knockout mouse undertaking. Nature genetics. 2004; 36 (9):921-924. doi: 10.1038/nature06968
Brevini TA, Antonini S, Cillo F, Crestan M, Gandolfi F. Porcine embryonic stem cells: Facts, challenges and hopes. Theriogenology 2007;1;68:206-13. doi: 10.1016/j.theriogenology.2007.05.043
Haraguchi S, Kikuchi K, Nakai M, Tokunaga T. Establishment of self-renewing porcine embryonic stem cell-like cells by sign inhibition. The Journal of reproduction and development. 2012;58(6):707-716.
Kim S, Kim JH, Lee E, Jeong YW, Hossein MS, Park SM, et al. Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote (Cambridge, England). 2010;18(2):93-101.
Brevini TA, Pennarossa G, Attanasio L, Vanelli A, Gasparrini B, Gandolfi F. Culture circumstances and signalling networks promoting the establishment of cell strains from parthenogenetic and biparental pig embryos. Stem cell critiques. 2010;6(3):484-495.
Gjorret JO, Maddox-Hyttel P. Attempts in direction of derivation and establishment of bovine embryonic stem cell-like cultures. Reproduction, fertility, and development. 2005;17(1-2):113-124.
Sims M, First NL. Production of calves by switch of nuclei from cultured inner cell mass cells. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(13):6143-6147.
Stice SL, Strelchenko NS, Keefer CL, Matthews L. Pluripotent bovine embryonic cell traces direct embryonic growth following nuclear switch. Biology of reproduction. 1996;54(1):100-110.
Iwasaki S, Campbell KH, Galli C, Akiyama K. Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biology of reproduction. 2000;62(2):470-475.
Mitalipova M, Beyhan Z, First NL. Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning. 2001;3(2):59-67.
Cao S, Wang F, Chen Z, Liu Z, Mei C, Wu H,et al. Isolation and tradition of primary bovine embryonic stem cell colonies by a novel technique. Journal of experimental zoology. Part A, Ecological genetics and physiology. 2009;311A(5):368-376.
Pashaiasl M, Khodadadi K, Holland MK, Verma PJ. The efficient era of cell strains from bovine parthenotes. Cellular reprogramming. 2010;12(5):571-579.
Kim C, Amano T, Park J, Carter MG, Tian X, Yang X. Improvement of embryonic stem cell line derivation effectivity with novel medium, glucose focus, and epigenetic modifications. Cloning and stem cells. 2009;11(1):89-100.
Lim ML, Vassiliev I, Richings NM, Firsova AB, Zhang C, et al. A novel, environment friendly technique to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by remedy with 5-azacytidine. Theriogenology. 2011;76(1):133-142.
Verma V, Huang B, Kallingappa PK, Oback B. Dual kinase inhibition promotes pluripotency in finite bovine embryonic cell lines. Stem cells and development. 2013;22(11):1728-1742.
Ozawa M, Sakatani M, Hankowski KE, Terada N, Dobbs KB, Hansen PJ. Importance of tradition circumstances through the morula-to-blastocyst period on capacity of inner cell-mass cells of bovine blastocysts for establishment of self-renewing pluripotent cells. Theriogenology. 2012;78(6):1243-1251.e1-2.
Gong G, Roach ML, Jiang L, Yang X, Tian XC. Culture situations and enzymatic passaging of bovine ESC-like cells. Cellular reprogramming. 2010;12(2):151-160.
Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA, Zhong C, et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America. 2018;115 (9):2090-2095.
Pant D, Keefer CL. Expression of pluripotency-related genes throughout bovine inner cell mass explant tradition. Cloning and stem cells. 2009;11(3):355-365.
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined elements. Cell. 2006;126(4):663-676.
Malaver-Ortega LF, Sumer H, Liu J, Verma PJ. The state-of-the-art for pluripotent stem cells derivation in home ungulates. Theriogenology. 2012;78(8):1749-1762.
Goncalves NN, Ambrosio CE, Piedrahita JA. Stem cells and regenerative drugs in home and companion animals: a multispecies perspective. Reproduction in domestic animals = Zuchthygiene. 2014;49 Suppl 4:2-10.
Ezashi T, Telugu BP, Roberts RM. Induced pluripotent stem cells from pigs and different ungulate species: an alternative to embryonic stem cells? Reproduction in home animals = Zuchthygiene. 2012;47 Suppl 4:92-97.
Koh S, Piedrahita JA. From "ES-like" cells to induced pluripotent stem cells: a historic perspective in home animals. Theriogenology. 2014;81(1):103-111.
Huang B, Li T, Alonso-Gonzalez L, Gorre R, Keatley S, Green A, et al. A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells beneath chemically outlined conditions of twin kinase inhibition. PloS one. 2011;6(9):e24501.
Wang SW, Wang SS, Wu DC, Lin YC, Ku CC, Wu CC, et al. Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters. Cell dying & illness 2013;4: e907.
Lin YC, Kuo KK, Wuputra K, Lin SH, Ku CC, Yang YH,et al. Bovine induced pluripotent stem cells are extra resistant to apoptosis than testicular cells in response to mono-(2-ethylhexyl) phthalate. International journal of molecular sciences. 2014;15(3):5011-5031. doi:10.3390/ijms15035011
Talluri TR,Kumar D, Glage S, Garrels W,Ivics Z, Debowski K, et al. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cellular reprogramming. 2015;17(2):131-40.
Zhao L, Wang Z, Zhang J, Yang J, Gao X, Wu B, et al. Characterization of the single-cell derived bovine induced pluripotent stem cells. Tissue & cell. 2017;49(5):521-527.
Heo YT, Quan X, Xu YN, Baek S, Choi H, Kim NH,et al. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem cells and development. 2015;24(3):393-402.
Malaver-Ortega LF, Sumer H, Liu J, Verma PJ. Inhibition of JAK-STAT ERK/MAPK and Glycogen Synthase Kinase-3 Induces a Change in Gene Expression Profile of Bovine Induced Pluripotent Stem Cells. Stem cells worldwide 2016. 2016:5127984.
Moon SY, Eun HJ, Baek SK, Jin SJ, Kim TS, Kim, SW, et al. Activation-Induced Cytidine Deaminase Induces DNA Demethylation of Pluripotency Genes in Bovine Differentiated Cells. Cellular reprogramming. 2016;18(5):298-308.
Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A, et al. A comparison of non-integrating reprogramming methods. Nature biotechnology. 2015;33(1):58-63.
Yoshioka N, Gros E, Li HR, Kumar S, Deacon DC, Maron C, et al. Efficient technology of human iPSCs by a synthetic self-replicative RNA. Cell stem cell. 2013;13(2):246-254.
Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T,et al. Reprogramming of human major somatic cells by OCT4 and chemical compounds. Cell stem cell. 2010;7(6):651-655. doi: 10.1016/j.stem.2010.11.015
Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P,et al. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell analysis. 2011;21(1):196-204.
Hou P, Li Y, Zhang X, Liu C, Guan J, Li H,et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science (New York, N.Y.). 2013;341(6146):651-654. doi: 10.1126/science.1239278
Du X, Feng T, Yu D, Wu Y, Zou H, Ma S, et al. Barriers for Deriving Transgene-Free Pig iPS Cells with Episomal Vectors. Stem cells (Dayton, Ohio). 2015;33(11):3228-3238.
Steinert AF, Palmer GD, Pilapil C, Noth U, Evans CH, Ghivizzani SC. Enhanced in vitro chondrogenesis of primary mesenchymal stem cells by mixed gene transfer. Tissue engineering. Part A. 2009;15(5):1127-1139.
Khan IM, Bishop JC, Gilbert, S, Archer CW.Clonal chondroprogenitors maintain telomerase activity and Sox9 expression during extended monolayer culture and retain chondrogenic potential. Osteoarthritis and cartilage. 2009;17(4):518-528.
Angele P, Schumann D, Angele M, Kinner B, Englert C, Hente R,et al. Cyclic, mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology 2004;41 (3-4):335-346.
Huang, CY, Hagar KL, Frost LE, Sun Y, Cheung HS. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem cells (Dayton, Ohio). 2004;22(3):313-323.
Allon AA, Butcher K, Schneider RA, Lotz JC. Structured bilaminar coculture outperforms stem cells and disc cells in a simulated degenerate disc environment. Spine. 2012;37(10):813-818. doi: 10.1097/BRS.0b013e31823b055f
Lai JH, Kajiyama G, Smith RL, Maloney W, Yang F. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels. Scientific studies. 2013;3:3553.
Martignani E, Eirew P, Accornero P, Eaves CJ, Baratta M. Human milk protein production in xenografts of genetically engineered bovine mammary epithelial stem cells. PloS one 2010;5(10):e13372.
Rauner G, Barash I. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, however has a latent destructive effect on cell proliferation. Experimental cell research. 2014;328(1):186-196.
Shuster DE, Kehrli ME Jr, Ackermann MR, Gilbert RO. Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cattle. Proceedings of the National Academy of Sciences of the United States of America 1992;89(19):9225-9229.
Nagahata H, Matsuki S, Higuchi H, Inanami O, Kuwabara M,Kobayashi, K. Bone marrow transplantation in a Holstein heifer with bovine leucocyte adhesion deficiency. Veterinary journal (London, England : 1997).1998;156(1):15-21.
Nagahata H, Hagiwara K, Higuchi H, Kirisawa R, Iwai H. Analysis of serum cytokine profile in a holstein heifer with leukocyte adhesion deficiency which survived for long period. The Journal of veterinary medical science. 2002;64(8):683-687.
Shiflett SL, Kaplan J, Ward DM. Chediak-Higashi Syndrome: a uncommon disorder of lysosomes and lysosome associated organelles. Pigment cell research. 2002;15(4):251-257.
Ogawa H, Tu CH, Kagamizono H, Soki K, Inoue Y, Akatsuka H,et al. Clinical, morphologic, and biochemical traits of Chediak-Higashi syndrome in fifty-six Japanese black cattle. American journal of veterinary research. 1997;Fifty eight (11):1221-1226.
Shiraishi M, Ogawa H, Ikeda M, Kawashima S, Ito K. Platelet dysfunction in Chediak-Higashi syndrome-affected cattle. The Journal of veterinary medical science.2002;64(9):751-60.
Ayers J R, Leipold HW, Padgett GA. Lesions in Brangus cattle with Chediak-Higashi syndrome. Veterinary pathology.1988;25 (6):432-436.
If you have any questions concerning where and how to use https://stemcellscosts.com/, you can make contact with us at the web-page.
- 이전글Review Of Vegas Red Online Casino 24.12.28
- 다음글Cable Tv 101: Stay Comfortable In Your Place 24.12.28
댓글목록
등록된 댓글이 없습니다.